Monte-Carlo Tree Search in Crazy Stone

Rémi Coulom

Université Charles de Gaulle, INRIA, CNRS, Lille, France

November 8th-10th, 2007

UEC and 12th Game Programming Workshop, Japan

1 Introduction

2 Crazy Stone's Algorithm

- Principles of Monte-Carlo Evaluation
- Tree Search
- Patterns

A New Approach to Go

The Challenge of Go

strongest programs weaker than amateur humans

Difficulty of Position Evaluation

- has to be dynamic
- unlike quiescence search + static evaluation of western chess
- local search lacks global understanding

The Monte-Carlo Approach

- random playouts
- dynamic evaluation with global understanding

The Monte-Carlo Revolution: Pioneers

1993: Bernd Brügmann (Gobble)

Not considered seriously

2000-2005: The Paris School

- Bernard Helmstetter (Oleg)
- Tristan Cazenave (Golois)
- Bruno Bouzy (Indigo)
- Guillaume Chaslot (Mango), joined in 2005

The Monte-Carlo Revolution: Success

2006: Success on small boards

- Crazy Stone wins 9×9 Computer Olympiad
- Viking (Magnus Persson), then Crazy Stone, then MoGo (Yizao Wang and Sylvain Gelly) lead 9×9 CGOS

2007: Success on all boards

- MoGo wins 19×19 Computer Olympiad
- Steenvreter (Erik van der Werf) wins 9×9
- ullet Crazy Stone beats KCC Igo with a score of 15-4 on 19 \times 19

Principles of Monte-Carlo Evaluation Tree Search Patterns

Principle: Random Playouts

One Playout

- Play at random
- Don't fill-up eyes

Position Evaluation

- Run many playouts
- Average them

Principles of Monte-Carlo Evaluation Tree Search Patterns

Move-Selection Method

Algorithm

- N playouts for every move
- pick the best winning rate

Cost

- accurate like $1/\sqrt{N}$
- 0.01 precision requires \sim 10,000 playouts

Principles of Monte-Carlo Evaluation Tree Search Patterns

Efficient Playout Allocation

Idea

more playouts to best moves

UCB: Upper Confidence Bound

$$\mathsf{UCB}_i = \frac{W_i}{N_i} + c \sqrt{\frac{\log t}{N_i}}$$

- W_i: wins (move i)
- N_i: playouts (move i)
- c: exploration parameter
- t: playouts (all moves)

Principles of Monte-Carlo Evaluation Tree Search Patterns

Recursive Tree Search: UCT

- Apply UCB to every position visited more than N_0 times
- No min-max backup: backup average outcome
- Proved convergence to min-max value
- Best-first tree growth

Principles of Monte-Carlo Evaluation Tree Search Patterns

Efficiency of Tree Search

Successes

- gold in Turin Olympiad on 9×9
- $\bullet~9\times9$ level on KGS: about 10k
- strength scales with thinking time
- only domain knowledge: don't fill eyes, and in atari, extend

Limits

- Not deep enough, even on 9×9
- Too many moves on 19 imes 19
- 19×19 level on KGS: about 30k

Principles of Monte-Carlo Evaluation Tree Search Patterns

Patterns

- learnt from human games
- Combine several features:
 - shape (surrounding stones)
 - distance to previous move
 - capture, extension
 - . . .
- Probability distribution over moves
- Used in playouts

High probability

Low probability

Principles of Monte-Carlo Evaluation Tree Search Patterns

Random playout with patterns

Principles of Monte-Carlo Evaluation Tree Search Patterns

Comparison 1

no patterns

patterns

Principles of Monte-Carlo Evaluation Tree Search Patterns

Comparison 2

patterns

Principles of Monte-Carlo Evaluation Tree Search Patterns

Progressive Widening

- Sort moves with patterns
- Keep best moves only
- Progressively add more

Principles of Monte-Carlo Evaluation Tree Search Patterns

Playing Strength

- $\bullet\,$ Stronger than classical programs on $19\times19\,$
- Ranked 2k on KGS

Crazy Fuseki

Play in the Center

Win by 0.5, Lose by a lot

Speculative Attacks: Provoke Opponent Blunder

○ Go Intellect● Crazy Stone

Speculative Attacks: Another Tricky Move

Miel (human)Crazy Stone

Future of Monte-Carlo Search

Improving Crazy Stone further

- More knowledge: playouts + progressive widening
- Adaptive playouts

Adaptive playouts

Interesting ideas in RLGO (David Silver)

Future of Monte-Carlo Search

Application to Other Domains

- Other games (Hex, Clobber)
- Automated book learning (for chess?)
- Automated Planning in general

If You Wish to Know More

http://remi.coulom.free.fr/Hakone2007/

- Download these slides
- Download papers
- Connect to KGS and play against Crazy Stone